From 3295bb8992bdca8c11f223ddd31a97fd57e3fa60 Mon Sep 17 00:00:00 2001 From: Ruben Lucas Date: Wed, 9 Apr 2025 15:23:54 +0200 Subject: [PATCH] =?UTF-8?q?=E2=9C=A8=20Find=20and=20add=20found=20sources?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- generic_rag/app.py | 15 +++++++++++ generic_rag/graphs/cond_ret_gen.py | 42 ++++++++++++++++++++++-------- 2 files changed, 46 insertions(+), 11 deletions(-) diff --git a/generic_rag/app.py b/generic_rag/app.py index 56b7162..64ec26d 100644 --- a/generic_rag/app.py +++ b/generic_rag/app.py @@ -129,6 +129,21 @@ async def process_cond_response(message): for response in graph.stream(message.content, config=config): await chainlit_response.stream_token(response) + if len(graph.last_retrieved_docs) > 0: + await chainlit_response.stream_token("\nThe following PDF source were consulted:\n") + for source, page_numbers in graph.last_retrieved_docs.items(): + page_numbers = list(page_numbers) + page_numbers.sort() + # display="side" seems to be not supported by chainlit for PDF's, so we use "inline" instead. + chainlit_response.elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0])) + await chainlit_response.update() + await chainlit_response.stream_token(f"- '{source}' on page(s): {page_numbers}\n") + + if len(graph.last_retrieved_sources) > 0: + await chainlit_response.stream_token("\nThe following web sources were consulted:\n") + for source in graph.last_retrieved_sources: + await chainlit_response.stream_token(f"- {source}\n") + await chainlit_response.send() diff --git a/generic_rag/graphs/cond_ret_gen.py b/generic_rag/graphs/cond_ret_gen.py index fbbf534..9b0cdd3 100644 --- a/generic_rag/graphs/cond_ret_gen.py +++ b/generic_rag/graphs/cond_ret_gen.py @@ -1,5 +1,8 @@ import logging -from typing import Any, Iterator, List +from typing import Any, Iterator +import re +import ast +from pathlib import Path from langchain_chroma import Chroma from langchain_core.documents import Document @@ -7,6 +10,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage from langchain_core.tools import tool +from langchain_core.runnables.config import RunnableConfig from langgraph.checkpoint.memory import MemorySaver from langgraph.graph import END, MessagesState, StateGraph from langgraph.prebuilt import InjectedStore, ToolNode, tools_condition @@ -39,28 +43,44 @@ class CondRetGenLangGraph: self.graph = graph_builder.compile(checkpointer=memory, store=vector_store) - def stream(self, message: str, config=None) -> Iterator[str]: + self.file_path_pattern = r"'file_path'\s*:\s*'((?:[^'\\]|\\.)*)'" + self.source_pattern = r"'source'\s*:\s*'((?:[^'\\]|\\.)*)'" + self.page_pattern = r"'page'\s*:\s*(\d+)" + self.pattern = r"Source:\s*(\{.*?\})" + + self.last_retrieved_docs = {} + self.last_retrieved_sources = set() + + def stream(self, message: str, config: RunnableConfig | None = None) -> Iterator[str]: for llm_response, metadata in self.graph.stream( {"messages": [{"role": "user", "content": message}]}, stream_mode="messages", config=config ): - if ( - llm_response.content - and not isinstance(llm_response, HumanMessage) - and metadata["langgraph_node"] == "_generate" - ): + if llm_response.content and metadata["langgraph_node"] == "_generate": yield llm_response.content - - # TODO: read souces used in AIMessages and set internal value sources used in last received stream. + elif llm_response.name == "_retrieve": + dictionary_strings = re.findall( + self.pattern, llm_response.content, re.DOTALL + ) # Use re.DOTALL if dicts might span newlines + for dict_str in dictionary_strings: + parsed_dict = ast.literal_eval(dict_str) + print(parsed_dict) + if "filetype" in parsed_dict and parsed_dict["filetype"] == "web": + self.last_retrieved_sources.add(parsed_dict["source"]) + elif Path(parsed_dict["source"]).suffix == ".pdf": + if parsed_dict["source"] in self.last_retrieved_docs: + self.last_retrieved_docs[parsed_dict["source"]].add(parsed_dict["page"]) + else: + self.last_retrieved_docs[parsed_dict["source"]] = {parsed_dict["page"]} @tool(response_format="content_and_artifact") def _retrieve( query: str, full_user_content: str, vector_store: Annotated[Any, InjectedStore()] - ) -> tuple[str, List[Document]]: + ) -> tuple[str, list[Document]]: """ Retrieve information related to a query and user content. """ # This method is used as a tool in the graph. - # It's doc-string is used for the pydentic model, please consider doc-string text carefully. + # It's doc-string is used for the pydantic model, please consider doc-string text carefully. # Furthermore, it can not and should not have the `self` parameter. # If you want to pass on state, please refer to: # https://python.langchain.com/docs/concepts/tools/#special-type-annotations