Merge pull request 'CondRetGenLangGraph() returns web and pdf sources by levering the stream defintion' (#19) from cond-sources into main

Reviewed-on: AI_team/generic-RAG-demo#19
Reviewed-by: nielsonj <nielson.janne@sogeti.com>
This commit is contained in:
nielsonj 2025-04-09 19:39:58 +02:00
commit ab78fdc0c7
3 changed files with 54 additions and 27 deletions

View File

@ -93,15 +93,7 @@ async def on_message(message: cl.Message):
await process_response(message)
async def process_response(message):
config = {"configurable": {"thread_id": cl.user_session.get("id")}}
chainlit_response = cl.Message(content="")
async for response in graph.stream(message.content, config=config):
await chainlit_response.stream_token(response)
pdf_sources = graph.get_last_pdf_sources()
async def add_sources(chainlit_response: cl.Message, pdf_sources: dict, web_sources: set | list):
if len(pdf_sources) > 0:
await chainlit_response.stream_token("\nThe following PDF source were consulted:\n")
for source, page_numbers in pdf_sources.items():
@ -111,13 +103,24 @@ async def process_response(message):
chainlit_response.elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0]))
await chainlit_response.update()
await chainlit_response.stream_token(f"- '{source}' on page(s): {page_numbers}\n")
web_sources = graph.get_last_web_sources()
if len(web_sources) > 0:
await chainlit_response.stream_token("\nThe following web sources were consulted:\n")
for source in web_sources:
await chainlit_response.stream_token(f"- {source}\n")
async def process_response(message):
config = {"configurable": {"thread_id": cl.user_session.get("id")}}
chainlit_response = cl.Message(content="")
async for response in graph.stream(message.content, config=config):
await chainlit_response.stream_token(response)
pdf_sources = graph.get_last_pdf_sources()
web_sources = graph.get_last_web_sources()
await add_sources(chainlit_response, pdf_sources, web_sources)
await chainlit_response.send()
@ -129,6 +132,8 @@ async def process_cond_response(message):
for response in graph.stream(message.content, config=config):
await chainlit_response.stream_token(response)
await add_sources(chainlit_response, graph.last_retrieved_docs, graph.last_retrieved_sources)
await chainlit_response.send()

View File

@ -1,5 +1,8 @@
import logging
from typing import Any, Iterator, List
from typing import Any, Iterator
import re
import ast
from pathlib import Path
from langchain_chroma import Chroma
from langchain_core.documents import Document
@ -7,6 +10,7 @@ from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_core.runnables.config import RunnableConfig
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, MessagesState, StateGraph
from langgraph.prebuilt import InjectedStore, ToolNode, tools_condition
@ -39,28 +43,43 @@ class CondRetGenLangGraph:
self.graph = graph_builder.compile(checkpointer=memory, store=vector_store)
def stream(self, message: str, config=None) -> Iterator[str]:
self.file_path_pattern = r"'file_path'\s*:\s*'((?:[^'\\]|\\.)*)'"
self.source_pattern = r"'source'\s*:\s*'((?:[^'\\]|\\.)*)'"
self.page_pattern = r"'page'\s*:\s*(\d+)"
self.pattern = r"Source:\s*(\{.*?\})"
self.last_retrieved_docs = {}
self.last_retrieved_sources = set()
def stream(self, message: str, config: RunnableConfig | None = None) -> Iterator[str]:
for llm_response, metadata in self.graph.stream(
{"messages": [{"role": "user", "content": message}]}, stream_mode="messages", config=config
):
if (
llm_response.content
and not isinstance(llm_response, HumanMessage)
and metadata["langgraph_node"] == "_generate"
):
if llm_response.content and metadata["langgraph_node"] == "_generate":
yield llm_response.content
# TODO: read souces used in AIMessages and set internal value sources used in last received stream.
elif llm_response.name == "_retrieve":
dictionary_strings = re.findall(
self.pattern, llm_response.content, re.DOTALL
) # Use re.DOTALL if dicts might span newlines
for dict_str in dictionary_strings:
parsed_dict = ast.literal_eval(dict_str)
if "filetype" in parsed_dict and parsed_dict["filetype"] == "web":
self.last_retrieved_sources.add(parsed_dict["source"])
elif Path(parsed_dict["source"]).suffix == ".pdf":
if parsed_dict["source"] in self.last_retrieved_docs:
self.last_retrieved_docs[parsed_dict["source"]].add(parsed_dict["page"])
else:
self.last_retrieved_docs[parsed_dict["source"]] = {parsed_dict["page"]}
@tool(response_format="content_and_artifact")
def _retrieve(
query: str, full_user_content: str, vector_store: Annotated[Any, InjectedStore()]
) -> tuple[str, List[Document]]:
) -> tuple[str, list[Document]]:
"""
Retrieve information related to a query and user content.
"""
# This method is used as a tool in the graph.
# It's doc-string is used for the pydentic model, please consider doc-string text carefully.
# It's doc-string is used for the pydantic model, please consider doc-string text carefully.
# Furthermore, it can not and should not have the `self` parameter.
# If you want to pass on state, please refer to:
# https://python.langchain.com/docs/concepts/tools/#special-type-annotations
@ -76,6 +95,10 @@ class CondRetGenLangGraph:
def _query_or_respond(self, state: MessagesState) -> dict[str, BaseMessage]:
"""Generate tool call for retrieval or respond."""
# Reset last retrieved docs
self.last_retrieved_docs = {}
self.last_retrieved_sources = set()
llm_with_tools = self.chat_model.bind_tools([self._retrieve])
response = llm_with_tools.invoke(state["messages"])
return {"messages": [response]}

View File

@ -61,12 +61,11 @@ class RetGenLangGraph:
return pdf_sources
for doc in self.last_retrieved_docs:
try:
Path(doc.metadata["source"]).suffix == ".pdf"
except KeyError:
continue
else:
source_candidate = doc.metadata["source"]
if "source" in doc.metadata and Path(doc.metadata["source"]).suffix.lower() == ".pdf":
source = doc.metadata["source"]
else:
continue
if source not in pdf_sources:
pdf_sources[source] = set()