🔀 Merge remote-tracking branch 'origin/main' into setting-parser

This commit is contained in:
Ruben Lucas 2025-04-18 12:01:57 +02:00
commit af5cbcacc3
3 changed files with 30 additions and 4 deletions

View File

@ -10,7 +10,7 @@ from chainlit.cli import run_chainlit
from langchain_chroma import Chroma
from generic_rag.parsers.config import AppSettings, load_settings
from generic_rag.backend.models import get_chat_model, get_embedding_model
from generic_rag.backend.models import get_chat_model, get_embedding_model, get_compression_model
from generic_rag.graphs.cond_ret_gen import CondRetGenLangGraph
from generic_rag.graphs.ret_gen import RetGenLangGraph
from generic_rag.parsers.parser import add_pdf_files, add_urls
@ -67,6 +67,9 @@ else:
chat_model=chat_function,
embedding_model=embedding_function,
system_prompt=system_prompt,
compression_model=get_compression_model(
"BAAI/bge-reranker-base", vector_store
), # TODO: implement in config parser
)

View File

@ -1,11 +1,17 @@
import logging
import os
from langchain_chroma import Chroma
from langchain_aws import BedrockEmbeddings
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.retrievers import BaseRetriever
from langchain_aws import BedrockEmbeddings, ChatBedrock
from langchain_google_vertexai import VertexAIEmbeddings, ChatVertexAI
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace, HuggingFacePipeline
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain_ollama import ChatOllama, OllamaEmbeddings
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings, ChatOpenAI, OpenAIEmbeddings
@ -201,4 +207,11 @@ def get_embedding_model(settings: AppSettings) -> Embeddings:
raise ValueError("HuggingFace configuration requires 'emb_model'.")
return HuggingFaceEmbeddings(model_name=settings.huggingface.emb_model)
raise ValueError(f"Unknown or unhandled embedding backend type: {settings.emb_backend}")
raise ValueError(f"Unknown backend type: {settings.backend_type}")
def get_compression_model(model_name: str, vector_store: Chroma) -> BaseRetriever:
base_retriever = vector_store.as_retriever(search_kwargs={"k": 20})
rerank_model = HuggingFaceCrossEncoder(model_name=model_name)
compressor = CrossEncoderReranker(model=rerank_model, top_n=4)
return ContextualCompressionRetriever(base_compressor=compressor, base_retriever=base_retriever)

View File

@ -8,6 +8,7 @@ from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import BaseMessage, SystemMessage
from langchain_core.runnables.config import RunnableConfig
from langchain_core.retrievers import BaseRetriever
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph
from typing_extensions import List, TypedDict
@ -23,12 +24,18 @@ class State(TypedDict):
class RetGenLangGraph:
def __init__(
self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings, system_prompt: str
self,
vector_store: Chroma,
chat_model: BaseChatModel,
embedding_model: Embeddings,
system_prompt: str,
compression_model: BaseRetriever | None = None,
):
self.vector_store = vector_store
self.chat_model = chat_model
self.embedding_model = embedding_model
self.system_prompt = system_prompt
self.compression_model = compression_model
memory = MemorySaver()
graph_builder = StateGraph(State).add_sequence([self._retrieve, self._generate])
@ -45,7 +52,10 @@ class RetGenLangGraph:
def _retrieve(self, state: State) -> dict[str, list]:
logger.debug(f"querying VS for: {state["question"]}")
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
if self.compression_model:
self.last_retrieved_docs = self.compression_model.invoke(state["question"])
else:
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
return {"context": self.last_retrieved_docs}
def _generate(self, state: State) -> dict[str, list]: