forked from AI_team/Philosophy-RAG-demo
Add support for both lang Graphs
This commit is contained in:
parent
f25770e3ce
commit
ee0c731faf
@ -6,14 +6,12 @@ from pathlib import Path
|
||||
|
||||
import chainlit as cl
|
||||
from backend.models import BackendType, get_chat_model, get_embedding_model
|
||||
from graphs.ret_gen import RetGenLangGraph
|
||||
from chainlit.cli import run_chainlit
|
||||
|
||||
from graphs.cond_ret_gen import CondRetGenLangGraph
|
||||
from graphs.ret_gen import RetGenLangGraph
|
||||
from langchain_chroma import Chroma
|
||||
|
||||
from parsers.parser import add_pdf_files, add_urls
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -62,6 +60,13 @@ parser.add_argument(
|
||||
help="File path to store or load a Chroma DB from/to.",
|
||||
)
|
||||
parser.add_argument("-r", "--reset-chrome-db", action="store_true", help="Reset the Chroma DB.")
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--use-conditional-graph",
|
||||
action="store_true",
|
||||
help="Use the conditial retrieve generate graph over the regular retrieve generate graph. "
|
||||
"The conditional version has build in (chat) memory and is capable of quering vectorstores on its own insight.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
vector_store = Chroma(
|
||||
@ -70,35 +75,51 @@ vector_store = Chroma(
|
||||
persist_directory=str(args.chroma_db_location),
|
||||
)
|
||||
|
||||
ret_gen_graph = RetGenLangGraph(
|
||||
vector_store, chat_model=get_chat_model(args.backend), embedding_model=get_embedding_model(args.backend)
|
||||
)
|
||||
if args.use_conditional_graph:
|
||||
graph = CondRetGenLangGraph(
|
||||
vector_store, chat_model=get_chat_model(args.backend), embedding_model=get_embedding_model(args.backend)
|
||||
)
|
||||
else:
|
||||
graph = RetGenLangGraph(
|
||||
vector_store, chat_model=get_chat_model(args.backend), embedding_model=get_embedding_model(args.backend)
|
||||
)
|
||||
|
||||
|
||||
@cl.on_message
|
||||
async def on_message(message: cl.Message):
|
||||
response = ret_gen_graph.invoke(message.content)
|
||||
if isinstance(graph, CondRetGenLangGraph):
|
||||
config = {"configurable": {"thread_id": cl.user_session.get("id")}}
|
||||
|
||||
answer = response["answer"]
|
||||
answer += "\n\n"
|
||||
chainlit_response = cl.Message(content="")
|
||||
|
||||
pdf_sources = ret_gen_graph.get_last_pdf_sources()
|
||||
web_sources = ret_gen_graph.get_last_web_sources()
|
||||
for response in graph.stream(message.content, config=config):
|
||||
await chainlit_response.stream_token(response)
|
||||
|
||||
elements = []
|
||||
if len(pdf_sources) > 0:
|
||||
answer += "The following PDF source were consulted:\n"
|
||||
for source, page_numbers in pdf_sources.items():
|
||||
page_numbers = list(page_numbers)
|
||||
page_numbers.sort()
|
||||
# display="side" seems to be not supported by chainlit for PDF's, so we use "inline" instead.
|
||||
elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0]))
|
||||
answer += f"'{source}' on page(s): {page_numbers}\n"
|
||||
await chainlit_response.send()
|
||||
|
||||
if len(web_sources) > 0:
|
||||
answer += f"The following web sources were consulted: {web_sources}\n"
|
||||
elif isinstance(graph, RetGenLangGraph):
|
||||
response = graph.invoke(message.content)
|
||||
|
||||
await cl.Message(content=answer, elements=elements).send()
|
||||
answer = response["answer"]
|
||||
answer += "\n\n"
|
||||
|
||||
pdf_sources = graph.get_last_pdf_sources()
|
||||
web_sources = graph.get_last_web_sources()
|
||||
|
||||
elements = []
|
||||
if len(pdf_sources) > 0:
|
||||
answer += "The following PDF source were consulted:\n"
|
||||
for source, page_numbers in pdf_sources.items():
|
||||
page_numbers = list(page_numbers)
|
||||
page_numbers.sort()
|
||||
# display="side" seems to be not supported by chainlit for PDF's, so we use "inline" instead.
|
||||
elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0]))
|
||||
answer += f"'{source}' on page(s): {page_numbers}\n"
|
||||
|
||||
if len(web_sources) > 0:
|
||||
answer += f"The following web sources were consulted: {web_sources}\n"
|
||||
|
||||
await cl.Message(content=answer, elements=elements).send()
|
||||
|
||||
|
||||
@cl.set_starters
|
||||
|
||||
Loading…
Reference in New Issue
Block a user