Add a Conditional Retrieve/Generator LangGraph

This commit is contained in:
Nielson Janné 2025-03-17 16:51:15 +01:00
parent 3965ce0fb2
commit f25770e3ce

View File

@ -0,0 +1,106 @@
import logging
from typing import Any, Iterator, List
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_core.tools import tool
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, MessagesState, StateGraph
from langgraph.prebuilt import InjectedStore, ToolNode, tools_condition
from typing_extensions import Annotated
class CondRetGenLangGraph:
def __init__(self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings):
self.chat_model = chat_model
self.embedding_model = embedding_model
self.system_prompt = (
"You are an assistant for question-answering tasks. "
"If the question is in Dutch, answer in Dutch. If the question is in English, answer in English."
"Use the following pieces of retrieved context to answer the question. "
"If you don't know the answer, say that you don't know."
)
memory = MemorySaver()
tools = ToolNode([self._retrieve])
graph_builder = StateGraph(MessagesState)
graph_builder.add_node(self._query_or_respond)
graph_builder.add_node(tools)
graph_builder.add_node(self._generate)
graph_builder.set_entry_point("_query_or_respond")
graph_builder.add_conditional_edges("_query_or_respond", tools_condition, {END: END, "tools": "tools"})
graph_builder.add_edge("tools", "_generate")
graph_builder.add_edge("_generate", END)
self.graph = graph_builder.compile(checkpointer=memory, store=vector_store)
def stream(self, message: str, config=None) -> Iterator[str]:
for llm_response, metadata in self.graph.stream(
{"messages": [{"role": "user", "content": message}]}, stream_mode="messages", config=config
):
if (
llm_response.content
and not isinstance(llm_response, HumanMessage)
and metadata["langgraph_node"] == "_generate"
):
yield llm_response.content
# TODO: read souces used in AIMessages and set internal value sources used in last received stream.
@tool(response_format="content_and_artifact")
def _retrieve(
query: str, full_user_content: str, vector_store: Annotated[Any, InjectedStore()]
) -> tuple[str, List[Document]]:
"""
Retrieve information related to a query and user content.
"""
# This method is used as a tool in the graph.
# It's doc-string is used for the pydentic model, please consider doc-string text carefully.
# Furthermore, it can not and should not have the `self` parameter.
# If you want to pass on state, please refer to:
# https://python.langchain.com/docs/concepts/tools/#special-type-annotations
logging.info(f"Query: {query}")
logging.info(f"user content: {full_user_content}")
retrieved_docs = []
retrieved_docs = vector_store.similarity_search(query, k=4)
retrieved_docs = vector_store.similarity_search(full_user_content, k=4)
serialized = "\n\n".join((f"Source: {doc.metadata}\nContent: {doc.page_content}") for doc in retrieved_docs)
return serialized, retrieved_docs
def _query_or_respond(self, state: MessagesState) -> dict[str, BaseMessage]:
"""Generate tool call for retrieval or respond."""
llm_with_tools = self.chat_model.bind_tools([self._retrieve])
response = llm_with_tools.invoke(state["messages"])
return {"messages": [response]}
def _generate(self, state: MessagesState) -> dict[str, BaseMessage]:
"""Generate answer."""
# get generated ToolMessages
recent_tool_messages = []
for message in reversed(state["messages"]):
if message.type == "tool":
recent_tool_messages.append(message)
else:
break
tool_messages = recent_tool_messages[::-1]
# format into prompt
docs_content = "\n\n".join(doc.content for doc in tool_messages)
system_message_content = self.system_prompt + f"\n\n{docs_content}"
conversation_messages = [
message
for message in state["messages"]
if message.type in ("human", "system") or (message.type == "ai" and not message.tool_calls)
]
prompt = [SystemMessage(system_message_content)] + conversation_messages
# run
response = self.chat_model.invoke(prompt)
return {"messages": [response]}