forked from AI_team/Philosophy-RAG-demo
✨ Add Reranker model
This commit is contained in:
parent
59ab43d31e
commit
fbc0e74678
@ -8,7 +8,13 @@ import chainlit as cl
|
||||
from chainlit.cli import run_chainlit
|
||||
from langchain_chroma import Chroma
|
||||
|
||||
from generic_rag.backend.models import ChatBackend, EmbeddingBackend, get_chat_model, get_embedding_model
|
||||
from generic_rag.backend.models import (
|
||||
ChatBackend,
|
||||
EmbeddingBackend,
|
||||
get_chat_model,
|
||||
get_embedding_model,
|
||||
get_compression_model,
|
||||
)
|
||||
from generic_rag.graphs.cond_ret_gen import CondRetGenLangGraph
|
||||
from generic_rag.graphs.ret_gen import RetGenLangGraph
|
||||
from generic_rag.parsers.parser import add_pdf_files, add_urls
|
||||
@ -103,6 +109,9 @@ else:
|
||||
chat_model=get_chat_model(args.chat_backend),
|
||||
embedding_model=get_embedding_model(args.emb_backend),
|
||||
system_prompt=system_prompt,
|
||||
compression_model=get_compression_model(
|
||||
"BAAI/bge-reranker-base", vector_store
|
||||
), # TODO: implement in config parser
|
||||
)
|
||||
|
||||
|
||||
@ -129,7 +138,9 @@ async def add_sources(chainlit_response: cl.Message, pdf_sources: dict, web_sour
|
||||
for source, page_numbers in pdf_sources.items():
|
||||
filename = Path(source).name
|
||||
await chainlit_response.stream_token(f"- {filename} on page(s): {sorted(page_numbers)}\n")
|
||||
chainlit_response.elements.append(cl.Pdf(name=filename, display="side", path=source, page=sorted(page_numbers)[0]))
|
||||
chainlit_response.elements.append(
|
||||
cl.Pdf(name=filename, display="side", path=source, page=sorted(page_numbers)[0])
|
||||
)
|
||||
|
||||
if len(web_sources) > 0:
|
||||
await chainlit_response.stream_token("\n\nThe following web sources were consulted:\n")
|
||||
|
||||
@ -1,12 +1,17 @@
|
||||
import os
|
||||
from enum import Enum
|
||||
|
||||
from langchain_chroma import Chroma
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_aws import BedrockEmbeddings
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_google_vertexai import VertexAIEmbeddings
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
from langchain.retrievers import ContextualCompressionRetriever
|
||||
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
||||
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
||||
from langchain_ollama import ChatOllama, OllamaEmbeddings
|
||||
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings, OpenAIEmbeddings
|
||||
|
||||
@ -83,3 +88,10 @@ def get_embedding_model(backend_type: EmbeddingBackend) -> Embeddings:
|
||||
return HuggingFaceEmbeddings(model_name=os.environ["HUGGINGFACE_EMB_MODEL"])
|
||||
|
||||
raise ValueError(f"Unknown backend type: {backend_type}")
|
||||
|
||||
|
||||
def get_compression_model(model_name: str, vector_store: Chroma) -> BaseRetriever:
|
||||
base_retriever = vector_store.as_retriever(search_kwargs={"k": 20})
|
||||
rerank_model = HuggingFaceCrossEncoder(model_name=model_name)
|
||||
compressor = CrossEncoderReranker(model=rerank_model, top_n=4)
|
||||
return ContextualCompressionRetriever(base_compressor=compressor, base_retriever=base_retriever)
|
||||
|
||||
@ -8,6 +8,7 @@ from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import BaseMessage, SystemMessage
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langgraph.checkpoint.memory import MemorySaver
|
||||
from langgraph.graph import END, START, StateGraph
|
||||
from typing_extensions import List, TypedDict
|
||||
@ -23,12 +24,18 @@ class State(TypedDict):
|
||||
|
||||
class RetGenLangGraph:
|
||||
def __init__(
|
||||
self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings, system_prompt: str
|
||||
self,
|
||||
vector_store: Chroma,
|
||||
chat_model: BaseChatModel,
|
||||
embedding_model: Embeddings,
|
||||
system_prompt: str,
|
||||
compression_model: BaseRetriever | None = None,
|
||||
):
|
||||
self.vector_store = vector_store
|
||||
self.chat_model = chat_model
|
||||
self.embedding_model = embedding_model
|
||||
self.system_prompt = system_prompt
|
||||
self.compression_model = compression_model
|
||||
|
||||
memory = MemorySaver()
|
||||
graph_builder = StateGraph(State).add_sequence([self._retrieve, self._generate])
|
||||
@ -45,7 +52,10 @@ class RetGenLangGraph:
|
||||
|
||||
def _retrieve(self, state: State) -> dict[str, list]:
|
||||
logger.debug(f"querying VS for: {state["question"]}")
|
||||
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
|
||||
if self.compression_model:
|
||||
self.last_retrieved_docs = self.compression_model.invoke(state["question"])
|
||||
else:
|
||||
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
|
||||
return {"context": self.last_retrieved_docs}
|
||||
|
||||
def _generate(self, state: State) -> dict[str, list]:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user