forked from AI_team/Philosophy-RAG-demo
191 lines
9.0 KiB
Python
191 lines
9.0 KiB
Python
import logging
|
|
|
|
from generic_rag.parsers.config import AppSettings, ChatBackend, EmbeddingBackend
|
|
|
|
# Langchain imports
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_aws import BedrockEmbeddings, ChatBedrock # Import ChatBedrock
|
|
from langchain_google_vertexai import VertexAIEmbeddings, ChatVertexAI # Import ChatVertexAI
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
from langchain_ollama import ChatOllama, OllamaEmbeddings
|
|
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings, ChatOpenAI, OpenAIEmbeddings # Import ChatOpenAI
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_chat_model(settings: AppSettings) -> BaseChatModel:
|
|
"""
|
|
Initializes and returns a chat model based on the backend type and configuration.
|
|
|
|
Args:
|
|
settings: The loaded AppSettings object containing configurations.
|
|
|
|
Returns:
|
|
An instance of BaseChatModel.
|
|
|
|
Raises:
|
|
ValueError: If the backend type is unknown or required configuration is missing.
|
|
"""
|
|
logger.info(f"Initializing chat model for backend: {settings.chat_backend.value}")
|
|
|
|
if settings.chat_backend == ChatBackend.azure:
|
|
if not settings.azure:
|
|
raise ValueError("Azure chat backend selected, but 'azure' configuration section is missing in config.")
|
|
if (
|
|
not settings.azure.llm_endpoint
|
|
or not settings.azure.llm_deployment_name
|
|
or not settings.azure.llm_api_version
|
|
):
|
|
raise ValueError(
|
|
"Azure configuration requires 'llm_endpoint', 'llm_deployment_name', and 'llm_api_version'."
|
|
)
|
|
return AzureChatOpenAI(
|
|
azure_endpoint=settings.azure.llm_endpoint,
|
|
azure_deployment=settings.azure.llm_deployment_name,
|
|
openai_api_version=settings.azure.llm_api_version,
|
|
openai_api_key=settings.azure.openai_api_key.get_secret_value() if settings.azure.openai_api_key else None,
|
|
)
|
|
|
|
if settings.chat_backend == ChatBackend.openai:
|
|
if not settings.openai:
|
|
raise ValueError("OpenAI chat backend selected, but 'openai' configuration section is missing.")
|
|
if not settings.openai.api_key or not settings.openai.chat_model:
|
|
raise ValueError("OpenAI configuration requires 'api_key' and 'chat_model'.")
|
|
logger.info(f"Using OpenAI model: {model_name}")
|
|
return ChatOpenAI(model=settings.openai.chat_model, openai_api_key=settings.openai.api_key.get_secret_value())
|
|
|
|
if settings.chat_backend == ChatBackend.google_vertex:
|
|
if not settings.google_vertex:
|
|
raise ValueError(
|
|
"Google Vertex chat backend selected, but 'google_vertex' configuration section is missing."
|
|
)
|
|
if settings.google_vertex.chat_model:
|
|
model_name = settings.google.chat_model
|
|
logger.info(f"Using Google Vertex model: {model_name}")
|
|
return ChatVertexAI(
|
|
model_name=settings.google_vertex.chat_model,
|
|
project=settings.google_vertex.project_id,
|
|
location=settings.google_vertex.location,
|
|
)
|
|
|
|
if settings.chat_backend == ChatBackend.aws:
|
|
if not settings.aws:
|
|
raise ValueError("AWS Bedrock chat backend selected, but 'aws' configuration section is missing.")
|
|
model_name = "anthropic.claude-v2" # Example default
|
|
if hasattr(settings.aws, "chat_model") and settings.aws.chat_model:
|
|
model_name = settings.aws.chat_model
|
|
logger.info(f"Using AWS Bedrock model: {model_name}")
|
|
return ChatBedrock(
|
|
model_id=model_name,
|
|
region_name=settings.aws.region_name,
|
|
)
|
|
|
|
if settings.chat_backend == ChatBackend.local:
|
|
if not settings.local or not settings.local.chat_model:
|
|
raise ValueError("Local chat backend selected, but 'local.chat_model' is missing in config.")
|
|
logger.info(f"Using Local Ollama model: {settings.local.chat_model}")
|
|
# Base URL can also be configured, e.g., base_url=config.local.ollama_base_url
|
|
return ChatOllama(model=settings.local.chat_model)
|
|
|
|
# This should not be reached if all Enum members are handled
|
|
raise ValueError(f"Unknown or unhandled chat backend type: {settings.chat_backend}")
|
|
|
|
|
|
def get_embedding_model(settings: AppSettings) -> Embeddings:
|
|
"""
|
|
Initializes and returns an embedding model based on the backend type and configuration.
|
|
|
|
Args:
|
|
settings: The loaded AppSettings object containing configurations.
|
|
|
|
Returns:
|
|
An instance of Embeddings.
|
|
|
|
Raises:
|
|
ValueError: If the backend type is unknown or required configuration is missing.
|
|
"""
|
|
logger.info(f"Initializing embedding model for backend: {settings.emb_backend.value}")
|
|
|
|
if settings.emb_backend == EmbeddingBackend.azure:
|
|
if not settings.azure:
|
|
raise ValueError("Azure embedding backend selected, but 'azure' configuration section is missing.")
|
|
if (
|
|
not settings.azure.emb_endpoint
|
|
or not settings.azure.emb_deployment_name
|
|
or not settings.azure.emb_api_version
|
|
):
|
|
raise ValueError(
|
|
"Azure configuration requires 'emb_endpoint', 'emb_deployment_name', and 'emb_api_version'."
|
|
)
|
|
return AzureOpenAIEmbeddings(
|
|
azure_endpoint=settings.azure.emb_endpoint,
|
|
azure_deployment=settings.azure.emb_deployment_name,
|
|
openai_api_version=settings.azure.emb_api_version,
|
|
openai_api_key=settings.azure.openai_api_key.get_secret_value() if settings.azure.openai_api_key else None,
|
|
)
|
|
|
|
if settings.emb_backend == EmbeddingBackend.openai:
|
|
if not settings.openai:
|
|
raise ValueError("OpenAI embedding backend selected, but 'openai' configuration section is missing.")
|
|
if not settings.openai.api_key:
|
|
raise ValueError("OpenAI configuration requires 'api_key'.")
|
|
model_name = "text-embedding-ada-002" # Example default
|
|
if hasattr(settings.openai, "emb_model") and settings.openai.emb_model:
|
|
model_name = settings.openai.emb_model
|
|
logger.info(f"Using OpenAI embedding model: {model_name}")
|
|
return OpenAIEmbeddings(model=model_name, openai_api_key=settings.openai.api_key.get_secret_value())
|
|
|
|
if settings.emb_backend == EmbeddingBackend.google_vertex:
|
|
if not settings.google_vertex:
|
|
raise ValueError(
|
|
"Google Vertex embedding backend selected, but 'google_vertex' configuration section is missing."
|
|
)
|
|
model_name = "textembedding-gecko@001" # Example default
|
|
if (
|
|
not settings.google_vertex.emb_model
|
|
or not settings.google_vertex.project_id
|
|
or not settings.google_vertex.location
|
|
):
|
|
raise ValueError("Google Vertex configuration requires 'emb_model', 'project_id', and 'location'.")
|
|
logger.info(f"Using Google Vertex embedding model: {model_name}")
|
|
return VertexAIEmbeddings(
|
|
model_name=settings.google_vertex.emb_model,
|
|
project=settings.google_vertex.project_id,
|
|
location=settings.google_vertex.location,
|
|
)
|
|
|
|
if settings.emb_backend == EmbeddingBackend.aws:
|
|
if not settings.aws:
|
|
raise ValueError("AWS Bedrock embedding backend selected, but 'aws' configuration section is missing.")
|
|
model_name = "amazon.titan-embed-text-v1" # Example default
|
|
if hasattr(settings.aws, "emb_model") and settings.aws.emb_model:
|
|
model_name = settings.aws.emb_model
|
|
logger.info(f"Using AWS Bedrock embedding model: {model_name}")
|
|
return BedrockEmbeddings(model_id=model_name, region_name=settings.aws.region_name)
|
|
|
|
if settings.emb_backend == EmbeddingBackend.local:
|
|
if not settings.local or not settings.local.emb_model:
|
|
raise ValueError("Local embedding backend selected, but 'local.emb_model' is missing in config.")
|
|
logger.info(f"Using Local Ollama embedding model: {settings.local.emb_model}")
|
|
return OllamaEmbeddings(model=settings.local.emb_model)
|
|
|
|
if settings.emb_backend == EmbeddingBackend.huggingface:
|
|
if not settings.huggingface or not settings.huggingface.emb_model:
|
|
if settings.local and settings.local.emb_model:
|
|
logger.warning(
|
|
"HuggingFace backend selected, but 'huggingface.emb_model' missing. Using 'local.emb_model'."
|
|
)
|
|
model_name = settings.local.emb_model
|
|
else:
|
|
raise ValueError(
|
|
"HuggingFace embedding backend selected, but 'huggingface.emb_model' (or 'local.emb_model') is missing in config."
|
|
)
|
|
else:
|
|
model_name = settings.huggingface.emb_model
|
|
|
|
logger.info(f"Using HuggingFace embedding model: {model_name}")
|
|
return HuggingFaceEmbeddings(model_name=model_name)
|
|
|
|
raise ValueError(f"Unknown or unhandled embedding backend type: {settings.emb_backend}")
|