Refactor out Retrieval/Generator LangGraph

This commit is contained in:
Nielson Janné 2025-03-17 14:15:50 +01:00
parent 3412dea813
commit 3fa0e31521
2 changed files with 96 additions and 92 deletions

View File

@ -6,14 +6,13 @@ from pathlib import Path
import chainlit as cl import chainlit as cl
from backend.models import BackendType, get_chat_model, get_embedding_model from backend.models import BackendType, get_chat_model, get_embedding_model
from graphs.ret_gen import RetGenLangGraph
from chainlit.cli import run_chainlit from chainlit.cli import run_chainlit
from langchain import hub
from langchain_chroma import Chroma from langchain_chroma import Chroma
from langchain_core.documents import Document
from langgraph.graph import START, StateGraph
from langgraph.pregel.io import AddableValuesDict
from parsers.parser import add_pdf_files, add_urls from parsers.parser import add_pdf_files, add_urls
from typing_extensions import List, TypedDict
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -65,62 +64,26 @@ parser.add_argument(
parser.add_argument("-r", "--reset-chrome-db", action="store_true", help="Reset the Chroma DB.") parser.add_argument("-r", "--reset-chrome-db", action="store_true", help="Reset the Chroma DB.")
args = parser.parse_args() args = parser.parse_args()
class State(TypedDict):
question: str
context: List[Document]
answer: str
def retrieve(state: State):
vector_store = cl.user_session.get("vector_store")
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
prompt = cl.user_session.get("prompt")
llm = cl.user_session.get("chat_model")
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
@cl.on_chat_start
async def on_chat_start():
vector_store = Chroma( vector_store = Chroma(
collection_name="generic_rag", collection_name="generic_rag",
embedding_function=get_embedding_model(args.back_end), embedding_function=get_embedding_model(args.backend),
persist_directory=str(args.chroma_db_location), persist_directory=str(args.chroma_db_location),
) )
cl.user_session.set("vector_store", vector_store) ret_gen_graph = RetGenLangGraph(
cl.user_session.set("emb_model", get_embedding_model(args.back_end)) vector_store, chat_model=get_chat_model(args.backend), embedding_model=get_embedding_model(args.backend)
cl.user_session.set("chat_model", get_chat_model(args.back_end)) )
cl.user_session.set("prompt", hub.pull("rlm/rag-prompt"))
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
cl.user_session.set("graph", graph)
@cl.on_message @cl.on_message
async def on_message(message: cl.Message): async def on_message(message: cl.Message):
graph = cl.user_session.get("graph") response = ret_gen_graph.invoke(message.content)
response = graph.invoke({"question": message.content})
answer = response["answer"] answer = response["answer"]
answer += "\n\n" answer += "\n\n"
pdf_sources = get_pdf_sources(response) pdf_sources = ret_gen_graph.get_last_pdf_sources()
web_sources = get_web_sources(response) web_sources = ret_gen_graph.get_last_web_sources()
elements = [] elements = []
if len(pdf_sources) > 0: if len(pdf_sources) > 0:
@ -128,7 +91,7 @@ async def on_message(message: cl.Message):
for source, page_numbers in pdf_sources.items(): for source, page_numbers in pdf_sources.items():
page_numbers = list(page_numbers) page_numbers = list(page_numbers)
page_numbers.sort() page_numbers.sort()
# display="side" seems to be not supported by chainlit for PDF's, so we use "inline" instead # display="side" seems to be not supported by chainlit for PDF's, so we use "inline" instead.
elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0])) elements.append(cl.Pdf(name="pdf", display="inline", path=source, page=page_numbers[0]))
answer += f"'{source}' on page(s): {page_numbers}\n" answer += f"'{source}' on page(s): {page_numbers}\n"
@ -138,39 +101,6 @@ async def on_message(message: cl.Message):
await cl.Message(content=answer, elements=elements).send() await cl.Message(content=answer, elements=elements).send()
def get_pdf_sources(response: AddableValuesDict) -> dict[str, list[int]]:
"""
Function that retrieves the PDF sources with page numbers from a response.
"""
pdf_sources = {}
for context in response["context"]:
try:
if context.metadata["filetype"] == "application/pdf":
source = context.metadata["source"]
page_number = context.metadata["page_number"]
if source in pdf_sources:
pdf_sources[source].add(page_number)
else:
pdf_sources[source] = {page_number}
except KeyError:
pass
return pdf_sources
def get_web_sources(response: AddableValuesDict) -> set:
"""
Function that retrieves the web sources from a response.
"""
web_sources = set()
for context in response["context"]:
try:
if context.metadata["filetype"] == "web":
web_sources.add(context.metadata["source"])
except KeyError:
pass
return web_sources
@cl.set_starters @cl.set_starters
async def set_starters(): async def set_starters():
chainlit_starters = os.environ["CHAINLIT_STARTERS"] chainlit_starters = os.environ["CHAINLIT_STARTERS"]
@ -193,12 +123,6 @@ async def set_starters():
if __name__ == "__main__": if __name__ == "__main__":
vector_store = Chroma(
collection_name="generic_rag",
embedding_function=get_embedding_model(args.back_end),
persist_directory=str(args.chroma_db_location),
)
if args.reset_chrome_db: if args.reset_chrome_db:
vector_store.reset_collection() vector_store.reset_collection()

View File

@ -0,0 +1,80 @@
from langgraph.graph import START, END, StateGraph
from typing_extensions import List, TypedDict
from langchain_core.documents import Document
from langchain import hub
from typing import Any, Union
class State(TypedDict):
question: str
context: List[Document]
answer: str
class RetGenLangGraph:
def __init__(self, vector_store, chat_model, embedding_model):
self.vector_store = vector_store
self.chat_model = chat_model
self.embedding_model = embedding_model
self.prompt = hub.pull("rlm/rag-prompt")
graph_builder = StateGraph(State).add_sequence([self._retrieve, self._generate])
graph_builder.add_edge(START, "_retrieve")
graph_builder.add_edge("_retrieve", "_generate")
graph_builder.add_edge("_generate", END)
self.graph = graph_builder.compile()
self.last_invoke = None
def invoke(self, message: str) -> Union[dict[str, Any], Any]:
self.last_invoke = self.graph.invoke(message)
return self.last_invoke
def _retrieve(self, state: State) -> dict:
retrieved_docs = self.vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def _generate(self, state: State) -> dict:
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = self.prompt.invoke({"question": state["question"], "context": docs_content})
response = self.chat_model.invoke(messages)
return {"answer": response.content}
def get_last_pdf_sources(self) -> dict[str, list[int]]:
"""
Method that retrieves the PDF sources used during the last invoke.
"""
if self.last_invoke is None:
return []
pdf_sources = {}
for context in self.last_invoke["context"]:
try:
if context.metadata["filetype"] == "application/pdf":
source = context.metadata["source"]
page_number = context.metadata["page_number"]
if source in pdf_sources:
pdf_sources[source].add(page_number)
else:
pdf_sources[source] = {page_number}
except KeyError:
pass
return pdf_sources
def get_last_web_sources(self) -> set:
"""
Method that retrieves the web sources used during the last invoke.
"""
if self.last_invoke is None:
return set()
web_sources = set()
for context in self.last_invoke["context"]:
try:
if context.metadata["filetype"] == "web":
web_sources.add(context.metadata["source"])
except KeyError:
pass
return web_sources