forked from AI_team/Philosophy-RAG-demo
Use a single system prompt everywhere
This commit is contained in:
parent
b1e8f19f00
commit
92b57224fa
@ -15,6 +15,13 @@ from parsers.parser import add_pdf_files, add_urls
|
|||||||
logging.basicConfig(level=logging.DEBUG)
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
system_prompt = (
|
||||||
|
"You are an assistant for question-answering tasks. "
|
||||||
|
"If the question is in Dutch, answer in Dutch. If the question is in English, answer in English."
|
||||||
|
"Use the following pieces of retrieved context to answer the question. "
|
||||||
|
"If you don't know the answer, say that you don't know."
|
||||||
|
)
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="A Sogeti Nederland Generic RAG demo.")
|
parser = argparse.ArgumentParser(description="A Sogeti Nederland Generic RAG demo.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"-c",
|
"-c",
|
||||||
@ -87,12 +94,14 @@ if args.use_conditional_graph:
|
|||||||
vector_store,
|
vector_store,
|
||||||
chat_model=get_chat_model(args.chat_backend),
|
chat_model=get_chat_model(args.chat_backend),
|
||||||
embedding_model=get_embedding_model(args.emb_backend),
|
embedding_model=get_embedding_model(args.emb_backend),
|
||||||
|
system_prompt=system_prompt,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
graph = RetGenLangGraph(
|
graph = RetGenLangGraph(
|
||||||
vector_store,
|
vector_store,
|
||||||
chat_model=get_chat_model(args.chat_backend),
|
chat_model=get_chat_model(args.chat_backend),
|
||||||
embedding_model=get_embedding_model(args.emb_backend),
|
embedding_model=get_embedding_model(args.emb_backend),
|
||||||
|
system_prompt=system_prompt,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -19,15 +19,12 @@ from typing_extensions import Annotated
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
class CondRetGenLangGraph:
|
class CondRetGenLangGraph:
|
||||||
def __init__(self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings):
|
def __init__(
|
||||||
|
self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings, system_prompt: str
|
||||||
|
):
|
||||||
self.chat_model = chat_model
|
self.chat_model = chat_model
|
||||||
self.embedding_model = embedding_model
|
self.embedding_model = embedding_model
|
||||||
self.system_prompt = (
|
self.system_prompt = system_prompt
|
||||||
"You are an assistant for question-answering tasks. "
|
|
||||||
"If the question is in Dutch, answer in Dutch. If the question is in English, answer in English."
|
|
||||||
"Use the following pieces of retrieved context to answer the question. "
|
|
||||||
"If you don't know the answer, say that you don't know."
|
|
||||||
)
|
|
||||||
|
|
||||||
memory = MemorySaver()
|
memory = MemorySaver()
|
||||||
tools = ToolNode([self._retrieve])
|
tools = ToolNode([self._retrieve])
|
||||||
|
|||||||
@ -2,11 +2,11 @@ import logging
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, AsyncGenerator
|
from typing import Any, AsyncGenerator
|
||||||
|
|
||||||
from langchain import hub
|
|
||||||
from langchain_chroma import Chroma
|
from langchain_chroma import Chroma
|
||||||
from langchain_core.documents import Document
|
from langchain_core.documents import Document
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
from langchain_core.language_models.chat_models import BaseChatModel
|
from langchain_core.language_models.chat_models import BaseChatModel
|
||||||
|
from langchain_core.messages import BaseMessage, SystemMessage
|
||||||
from langgraph.checkpoint.memory import MemorySaver
|
from langgraph.checkpoint.memory import MemorySaver
|
||||||
from langgraph.graph import END, START, StateGraph
|
from langgraph.graph import END, START, StateGraph
|
||||||
from typing_extensions import List, TypedDict
|
from typing_extensions import List, TypedDict
|
||||||
@ -17,15 +17,17 @@ logger = logging.getLogger(__name__)
|
|||||||
class State(TypedDict):
|
class State(TypedDict):
|
||||||
question: str
|
question: str
|
||||||
context: List[Document]
|
context: List[Document]
|
||||||
answer: str
|
answer: BaseMessage
|
||||||
|
|
||||||
|
|
||||||
class RetGenLangGraph:
|
class RetGenLangGraph:
|
||||||
def __init__(self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings):
|
def __init__(
|
||||||
|
self, vector_store: Chroma, chat_model: BaseChatModel, embedding_model: Embeddings, system_prompt: str
|
||||||
|
):
|
||||||
self.vector_store = vector_store
|
self.vector_store = vector_store
|
||||||
self.chat_model = chat_model
|
self.chat_model = chat_model
|
||||||
self.embedding_model = embedding_model
|
self.embedding_model = embedding_model
|
||||||
self.prompt = hub.pull("rlm/rag-prompt")
|
self.system_prompt = system_prompt
|
||||||
|
|
||||||
memory = MemorySaver()
|
memory = MemorySaver()
|
||||||
graph_builder = StateGraph(State).add_sequence([self._retrieve, self._generate])
|
graph_builder = StateGraph(State).add_sequence([self._retrieve, self._generate])
|
||||||
@ -45,11 +47,14 @@ class RetGenLangGraph:
|
|||||||
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
|
self.last_retrieved_docs = self.vector_store.similarity_search(state["question"])
|
||||||
return {"context": self.last_retrieved_docs}
|
return {"context": self.last_retrieved_docs}
|
||||||
|
|
||||||
async def _generate(self, state: State) -> AsyncGenerator[Any, Any]:
|
def _generate(self, state: State) -> dict[str, list]:
|
||||||
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
||||||
messages = await self.prompt.ainvoke({"question": state["question"], "context": docs_content})
|
system_message_content = self.system_prompt + f"\n\n{docs_content}"
|
||||||
async for response in self.chat_model.astream(messages):
|
|
||||||
yield {"answer": response.content}
|
prompt = [SystemMessage(system_message_content)] + [state["question"]]
|
||||||
|
|
||||||
|
response = self.chat_model.invoke(prompt)
|
||||||
|
return {"answer": [response]}
|
||||||
|
|
||||||
def get_last_pdf_sources(self) -> dict[str, list[int]]:
|
def get_last_pdf_sources(self) -> dict[str, list[int]]:
|
||||||
"""
|
"""
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user