280 lines
7.3 KiB
Plaintext
280 lines
7.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "e28fb85c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# %pip install gputil\n",
|
|
"# %pip install setuptools\n",
|
|
"# %pip install transformers\n",
|
|
"# %pip install torch\n",
|
|
"\n",
|
|
"# %pip install auto-gptq #==0.4.0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8922a3da",
|
|
"metadata": {},
|
|
"source": [
|
|
"What happens when you rescale the input and output embeddings?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "0667e71a",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/home/mick/pycharmprojects/Frankenstein/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
|
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import GPUtil\n",
|
|
"\n",
|
|
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
|
|
"import torch\n",
|
|
"# from auto_gptq import AutoGPTQForCausalLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "0273f299",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"No GPU detected on this system.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"gpus = GPUtil.getGPUs()\n",
|
|
"if not gpus:\n",
|
|
" print(\"No GPU detected on this system.\")\n",
|
|
"else:\n",
|
|
" for gpu in gpus:\n",
|
|
" print(f\"GPU Name: {gpu.name}\")\n",
|
|
" print(f\"Total VRAM: {gpu.memoryTotal} MB\")\n",
|
|
" print(f\"Free VRAM: {gpu.memoryFree} MB\")\n",
|
|
" print(f\"Used VRAM: {gpu.memoryUsed} MB\")\n",
|
|
" print(\"-\" * 40)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "67d7e006",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def grab_model(model_name, quantized = False):\n",
|
|
" if quantized:\n",
|
|
" model = AutoGPTQForCausalLM.from_quantized(model_name, device=\"cpu\", use_safetensors=True)\n",
|
|
" else:\n",
|
|
" model = AutoModelForCausalLM.from_pretrained(model_name)\n",
|
|
"\n",
|
|
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
|
" return model, tokenizer"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "153e9ff5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"modelA, tokenizerA = grab_model(\"gpt2\")\n",
|
|
"modelB, tokenizerB = grab_model(\"EleutherAI/gpt-neo-125M\")\n",
|
|
"\n",
|
|
"# modelA, tokenizerA = grab_model(\"EleutherAI/gpt-neo-125M-4bit\", quantized=True)\n",
|
|
"# modelB, tokenizerB = grab_model(\"iproskurina/opt-125m-GPTQ-4bit-g128\", quantized=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "1da291ed",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"modelA.config.hidden_size == modelB.config.hidden_size "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 113,
|
|
"id": "c62b2f41",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"tensor(False)\n",
|
|
"tensor(22.2842, grad_fn=<MaxBackward1>)\n",
|
|
"tensor(11.5013, grad_fn=<MeanBackward0>)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(torch.isnan(modelB.get_input_embeddings().weight).any())\n",
|
|
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).max())\n",
|
|
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).mean())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "2b9893a3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def check_orthogonal(R):\n",
|
|
" I = torch.eye(R.size(0), device=R.device)\n",
|
|
" delta = torch.norm(R.T @ R - I)\n",
|
|
" print(f\"Delta: {delta:.6e}\")\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ff93495e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"ModelA mean norms: 1.3624546527862549\n",
|
|
"ModelB mean norms: 11.50130844116211\n",
|
|
"0.1184608394563315\n",
|
|
"new_embedding mean norms: 11.50130844116211\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"emb1 = modelA.get_input_embeddings().weight\n",
|
|
"emb2 = modelB.get_input_embeddings().weight\n",
|
|
"\n",
|
|
"print(\"ModelA mean norms:\", torch.norm(emb1, dim=1).mean().item())\n",
|
|
"print(\"ModelB mean norms:\", torch.norm(emb2, dim=1).mean().item())\n",
|
|
"\n",
|
|
"scaling_factor = torch.norm(emb1, dim=1).mean().item() / torch.norm(emb2, dim=1).mean().item()\n",
|
|
"\n",
|
|
"print(\"Scaling factor: \", scaling_factor)\n",
|
|
"\n",
|
|
"new_embedding = torch.nn.Embedding.from_pretrained(emb1/scaling_factor)\n",
|
|
"\n",
|
|
"print(\"new_embedding mean norms:\", torch.norm(new_embedding.weight, dim=1).mean().item())\n",
|
|
"\n",
|
|
"modelA.set_input_embeddings(new_embedding)\n",
|
|
"modelA.lm_head.weight = new_embedding.weight\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 109,
|
|
"id": "85957357",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 109,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"modelA.lm_head.out_features == tokenizerA.vocab_size"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "d8d9d612",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Device set to use cpu\n",
|
|
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[{'generated_text': 'Hello, how are you?\\n\\nYou are not a new.\\n\\nYou are a new.\\n\\n\\nYou are not a new.\\n\\n\\nYou are not a new.\\n\\n\\na new.\\n\\na new.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na\\n\\na.\\n\\na\\n\\n.\\na\\n\\na\\n\\na\\n\\n.\\na\\n\\na\\n\\n.\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n'}]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# use model\n",
|
|
"pipe = pipeline(\"text-generation\", model=modelA, tokenizer=tokenizerB)\n",
|
|
"print(pipe(\"Hello, how are you?\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fc72ea8a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|