Frankenstein/rotation_fixed.ipynb

561 lines
16 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e28fb85c",
"metadata": {},
"outputs": [],
"source": [
"# %pip install gputil\n",
"# %pip install setuptools\n",
"# %pip install transformers\n",
"# %pip install torch\n",
"\n",
"# %pip install auto-gptq #==0.4.0"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0667e71a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mick/pycharmprojects/Frankenstein/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import GPUtil\n",
"\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"import torch\n",
"# from auto_gptq import AutoGPTQForCausalLM"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0273f299",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"No GPU detected on this system.\n"
]
}
],
"source": [
"gpus = GPUtil.getGPUs()\n",
"if not gpus:\n",
" print(\"No GPU detected on this system.\")\n",
"else:\n",
" for gpu in gpus:\n",
" print(f\"GPU Name: {gpu.name}\")\n",
" print(f\"Total VRAM: {gpu.memoryTotal} MB\")\n",
" print(f\"Free VRAM: {gpu.memoryFree} MB\")\n",
" print(f\"Used VRAM: {gpu.memoryUsed} MB\")\n",
" print(\"-\" * 40)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "67d7e006",
"metadata": {},
"outputs": [],
"source": [
"def grab_model(model_name, quantized = False):\n",
" if quantized:\n",
" model = AutoGPTQForCausalLM.from_quantized(model_name, device=\"cpu\", use_safetensors=True)\n",
" else:\n",
" model = AutoModelForCausalLM.from_pretrained(model_name)\n",
"\n",
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
" return model, tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "153e9ff5",
"metadata": {},
"outputs": [],
"source": [
"modelA, tokenizerA = grab_model(\"gpt2\")\n",
"modelB, tokenizerB = grab_model(\"EleutherAI/gpt-neo-125M\")\n",
"\n",
"# modelA, tokenizerA = grab_model(\"EleutherAI/gpt-neo-125M-4bit\", quantized=True)\n",
"# modelB, tokenizerB = grab_model(\"iproskurina/opt-125m-GPTQ-4bit-g128\", quantized=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1da291ed",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelA.config.hidden_size == modelB.config.hidden_size "
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "dcfc2d85",
"metadata": {},
"outputs": [],
"source": [
"# replace tokenizer:\n",
"# modelA.Tokenizer = tokenizerB # optional when not accessing directly \n",
"\n",
"# replace token embeddings for input and output:\n",
"# modelA.set_input_embeddings(modelB.get_input_embeddings())\n",
"# modelA.lm_head.weight = modelB.get_input_embeddings().weight\n",
"# modelA.resize_token_embeddings(tokenizerB.vocab_size)\n",
"\n",
"# modelA.transformer.wpe.weight = modelB.transformer.wpe.weight\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1011d3ad",
"metadata": {},
"outputs": [],
"source": [
"# emb1 = modelA.get_input_embeddings().weight\n",
"# emb2 = modelB.get_input_embeddings().weight\n",
"\n",
"# print(\"ModelA mean norms:\", torch.norm(emb1, dim=1).mean().item())\n",
"# print(\"ModelB mean norms:\", torch.norm(emb2, dim=1).mean().item())\n",
"\n",
"# scaling_factor = torch.norm(emb1, dim=1).mean().item() / torch.norm(emb2, dim=1).mean().item()\n",
"\n",
"# print(scaling_factor)\n",
"\n",
"# new_embedding = torch.nn.Embedding.from_pretrained(emb2*scaling_factor)\n",
"\n",
"# print(\"new_embedding mean norms:\", torch.norm(new_embedding.weight, dim=1).mean().item())\n",
"\n",
"# modelA.set_input_embeddings(new_embedding)\n",
"# modelA.lm_head.weight = new_embedding.weight\n"
]
},
{
"cell_type": "code",
"execution_count": 113,
"id": "c62b2f41",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(False)\n",
"tensor(22.2842, grad_fn=<MaxBackward1>)\n",
"tensor(11.5013, grad_fn=<MeanBackward0>)\n"
]
}
],
"source": [
"print(torch.isnan(modelB.get_input_embeddings().weight).any())\n",
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).max())\n",
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).mean())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2b9893a3",
"metadata": {},
"outputs": [],
"source": [
"def check_orthogonal(R):\n",
" I = torch.eye(R.size(0), device=R.device)\n",
" delta = torch.norm(R.T @ R - I)\n",
" print(f\"Delta: {delta:.6e}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e1a54c24",
"metadata": {},
"outputs": [],
"source": [
"# use proscrustes:\n",
"def procrustes(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:\n",
" # A_centered = A - A.mean(dim=0, keepdim=True)\n",
" # B_centered = B - B.mean(dim=0, keepdim=True)\n",
"\n",
" #M = B_centered.T @ A_centered\n",
" M = B.T @ A\n",
" # find optimal rotation with svd\n",
" U, _, Vt = torch.linalg.svd(M)\n",
"\n",
" # get rotation matrix that aligns B to A\n",
" R = U @ Vt\n",
"\n",
" check_orthogonal(R)\n",
" \n",
" return R # return rotated tensor\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fedd4d04",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff93495e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Delta: 6.706436e-05\n",
"torch.Size([1024, 768])\n"
]
}
],
"source": [
"emb1 = modelA.get_input_embeddings().weight\n",
"emb2 = modelB.get_input_embeddings().weight\n",
"\n",
"# get rotation matrix\n",
"R = procrustes(emb2, emb1)\n",
"emb1_R = emb1 @ R\n",
"\n",
"new_embedding = torch.nn.Embedding.from_pretrained(emb1_R)\n",
"\n",
"modelA.set_input_embeddings(new_embedding)\n",
"modelA.lm_head.weight = new_embedding.weight\n",
"\n",
"# def rotate_weight(W, R):\n",
"# if W.shape[1] == R.shape[0]:\n",
"# return W @ R\n",
"# if W.shape[0] == R.shape[0]:\n",
"# return R.T @ W\n",
"\n",
"# now fix the other layers by conjugating:\n",
"# for block in modelA.transformer.h:\n",
"# for M in [block.attn.c_attn, block.mlp.c_fc]:\n",
"# W = M.weight.data\n",
"# W[:] = R.T @ W\n",
"# for M in [block.attn.c_proj, block.mlp.c_proj]:\n",
"# W = M.weight.data\n",
"# W[:] = R.T @ W @ R\n",
"\n",
"def split_rotate_concat(W):\n",
" parts1 = [x for x in W.split(768, dim=1)]\n",
" for i, v in enumerate(parts1):\n",
" parts2 = [x for x in v.split(768, dim=0)]\n",
" for j, w in enumerate(parts2):\n",
" parts2[j] = R.T @ w @ R\n",
" parts1[i] = torch.cat(parts2, dim=0)\n",
" return torch.cat(parts1, dim=1)\n",
"\n",
"\n",
"def rotate_layernorm(ln):\n",
" ln.weight.data[:] = ln.weight.data @ R\n",
" ln.bias.data[:] = ln.bias.data @ R\n",
"\n",
"for block in modelA.transformer.h:\n",
" # print(block.attn.c_attn.weight.data.shape)\n",
" # print(block.mlp.c_fc.weight.data.shape)\n",
" # print(block.attn.c_proj.weight.data.shape)\n",
" # print(block.mlp.c_proj.weight.data.shape)\n",
" # block.attn.c_attn.weight.data[:] = split_rotate_concat(block.attn.c_attn.weight.data.T).T\n",
" # block.mlp.c_fc.weight.data[:] = split_rotate_concat(block.mlp.c_fc.weight.data.T).T\n",
" block.attn.c_attn.weight.data[:] = split_rotate_concat(block.attn.c_attn.weight.data)\n",
" block.mlp.c_fc.weight.data[:] = split_rotate_concat(block.mlp.c_fc.weight.data)\n",
" block.attn.c_proj.weight.data[:] = split_rotate_concat(block.attn.c_proj.weight.data)\n",
" block.mlp.c_proj.weight.data[:] = split_rotate_concat(block.mlp.c_proj.weight.data)\n",
" rotate_layernorm(block.ln_1)\n",
" rotate_layernorm(block.ln_2)\n",
"\n",
"rotate_layernorm(modelA.transformer.ln_f)\n",
"\n",
"\n",
"print(modelA.transformer.wpe.weight.data.shape)\n",
"modelA.transformer.wpe.weight.data[:] = modelA.transformer.wpe.weight.data @ R\n",
"\n",
" # for name in ['c_attn', 'c_proj']:\n",
" # W = getattr(block.attn, name).weight.data\n",
" # W[:] = R.T @ W @ R\n",
" # w1 = block.mlp.c_fc.weight.data\n",
" # w2 = block.mlp.c_proj.weight.data\n",
" # w1[:] = R.T @ W1 @ R\n",
" # w2[:] = R.T @ W2 @ R\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b671b41",
"metadata": {},
"outputs": [],
"source": [
"# modelA.transformer.wpe.weight = modelB.transformer.wpe.weight"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85957357",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# modelA.lm_head.out_features == tokenizerA.vocab_size"
]
},
{
"cell_type": "markdown",
"id": "f6b39638",
"metadata": {},
"source": [
"Text:"
]
},
{
"cell_type": "markdown",
"id": "fbfa8d62",
"metadata": {},
"source": [
"With it:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "998a0ed6",
"metadata": {},
"outputs": [],
"source": [
"# modelA.lm_head.weight = modelA.get_input_embeddings().weight # should change nothing: they are the same object.\n"
]
},
{
"cell_type": "markdown",
"id": "aa8b7ca4",
"metadata": {},
"source": [
"Text:"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "d8d9d612",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Device set to use cpu\n",
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'generated_text': 'Hello, how are you?orm Coulormormorm Coulorm Coul Coulorm Coul Coulinion Coulorm Coulonomousonomous Coulonomousonomousonomousonomousonomousormonomous Coulorm Coulonomousonomousonomous Coulonomousonomous Coulonomousonomousonomous Coulonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomous Coulonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomous Coulonomousonomousonomousonomousonomousonomousonomous Coulonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomous Amenonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomousonomous Coulonomous Coulonomousonomousonomousonomousonomousonomousonomoushered…] Coulonomousonomousonomous Amenomniaifulonomousonomouskeleyifulonomous Amenomniaifulhered Amenkeleyomniastad Coulonomousifulifulomniaifulomniaifulomniaifulifulifulomniaifulomnia…]hered…]ifulomniaifulifulomniastadkeleyomniaifulifulomniaifulomniaifulomniakeleyomniaomniaomnia Coulomniaifulomnia Coulifulomnia Coul Coulkeleyomniastad Coulomnia Coulkeleyomnia Coulkeleyomnia Coulkeleyomniaomnia Coulkeleyomniaomniaomniaomniastadomniaomniaomniaomnia Coulkeleyonomousomnia Coulomniaomniaomnia Coulkeleyomnia Coulomniaomniaomniaomnia Coulomniaomniakeleyomniakeleyomniakeleyomniaomniaomniaomniakeleystadkeleyomniakeleyomniaomnia'}]\n"
]
}
],
"source": [
"# use model\n",
"pipe = pipeline(\"text-generation\", model=modelA, tokenizer=tokenizerB)\n",
"print(pipe(\"Hello, how are you?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc72ea8a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7673a5e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 26,
"id": "79616f5c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelA.lm_head.weight.data_ptr() == modelA.get_input_embeddings().weight.data_ptr()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7fc76499",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelB.lm_head.weight.data_ptr() == modelB.get_input_embeddings().weight.data_ptr()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7d51d201",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 1212, 318, 257, 1332, 290, 1312, 4240, 1521, 262, 11241,\n",
" 11341, 389, 262, 976])\n"
]
}
],
"source": [
"tok = tokenizerA(\"This is a test and i wonder why the tokenizers are the same\", return_tensors = \"pt\")\n",
"print(tok.input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2e76534a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 1212, 318, 257, 1332, 290, 1312, 4240, 1521, 262, 11241,\n",
" 11341, 389, 262, 976])\n"
]
}
],
"source": [
"tok = tokenizerB(\"This is a test and i wonder why the tokenizers are the same\", return_tensors = \"pt\")\n",
"print(tok.input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a44c465a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "381c712f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "153995fe",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}