Frankenstein/scaling.ipynb

512 lines
13 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e28fb85c",
"metadata": {},
"outputs": [],
"source": [
"# %pip install gputil\n",
"# %pip install setuptools\n",
"# %pip install transformers\n",
"# %pip install torch\n",
"\n",
"# %pip install auto-gptq #==0.4.0"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0667e71a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mick/pycharmprojects/Frankenstein/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import GPUtil\n",
"\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"import torch\n",
"# from auto_gptq import AutoGPTQForCausalLM"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0273f299",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"No GPU detected on this system.\n"
]
}
],
"source": [
"gpus = GPUtil.getGPUs()\n",
"if not gpus:\n",
" print(\"No GPU detected on this system.\")\n",
"else:\n",
" for gpu in gpus:\n",
" print(f\"GPU Name: {gpu.name}\")\n",
" print(f\"Total VRAM: {gpu.memoryTotal} MB\")\n",
" print(f\"Free VRAM: {gpu.memoryFree} MB\")\n",
" print(f\"Used VRAM: {gpu.memoryUsed} MB\")\n",
" print(\"-\" * 40)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "67d7e006",
"metadata": {},
"outputs": [],
"source": [
"def grab_model(model_name, quantized = False):\n",
" if quantized:\n",
" model = AutoGPTQForCausalLM.from_quantized(model_name, device=\"cpu\", use_safetensors=True)\n",
" else:\n",
" model = AutoModelForCausalLM.from_pretrained(model_name)\n",
"\n",
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
" return model, tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "153e9ff5",
"metadata": {},
"outputs": [],
"source": [
"modelA, tokenizerA = grab_model(\"gpt2\")\n",
"modelB, tokenizerB = grab_model(\"EleutherAI/gpt-neo-125M\")\n",
"\n",
"# modelA, tokenizerA = grab_model(\"EleutherAI/gpt-neo-125M-4bit\", quantized=True)\n",
"# modelB, tokenizerB = grab_model(\"iproskurina/opt-125m-GPTQ-4bit-g128\", quantized=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1da291ed",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelA.config.hidden_size == modelB.config.hidden_size "
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "dcfc2d85",
"metadata": {},
"outputs": [],
"source": [
"# replace tokenizer:\n",
"# modelA.Tokenizer = tokenizerB # optional when not accessing directly \n",
"\n",
"# replace token embeddings for input and output:\n",
"# modelA.set_input_embeddings(modelB.get_input_embeddings())\n",
"# modelA.lm_head.weight = modelB.get_input_embeddings().weight\n",
"# modelA.resize_token_embeddings(tokenizerB.vocab_size)\n",
"\n",
"# modelA.transformer.wpe.weight = modelB.transformer.wpe.weight\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1011d3ad",
"metadata": {},
"outputs": [],
"source": [
"# emb1 = modelA.get_input_embeddings().weight\n",
"# emb2 = modelB.get_input_embeddings().weight\n",
"\n",
"# print(\"ModelA mean norms:\", torch.norm(emb1, dim=1).mean().item())\n",
"# print(\"ModelB mean norms:\", torch.norm(emb2, dim=1).mean().item())\n",
"\n",
"# scaling_factor = torch.norm(emb1, dim=1).mean().item() / torch.norm(emb2, dim=1).mean().item()\n",
"\n",
"# print(scaling_factor)\n",
"\n",
"# new_embedding = torch.nn.Embedding.from_pretrained(emb2*scaling_factor)\n",
"\n",
"# print(\"new_embedding mean norms:\", torch.norm(new_embedding.weight, dim=1).mean().item())\n",
"\n",
"# modelA.set_input_embeddings(new_embedding)\n",
"# modelA.lm_head.weight = new_embedding.weight\n"
]
},
{
"cell_type": "code",
"execution_count": 113,
"id": "c62b2f41",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(False)\n",
"tensor(22.2842, grad_fn=<MaxBackward1>)\n",
"tensor(11.5013, grad_fn=<MeanBackward0>)\n"
]
}
],
"source": [
"print(torch.isnan(modelB.get_input_embeddings().weight).any())\n",
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).max())\n",
"print(torch.norm(modelB.get_input_embeddings().weight, dim=1).mean())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2b9893a3",
"metadata": {},
"outputs": [],
"source": [
"def check_orthogonal(R):\n",
" I = torch.eye(R.size(0), device=R.device)\n",
" delta = torch.norm(R.T @ R - I)\n",
" print(f\"Delta: {delta:.6e}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e1a54c24",
"metadata": {},
"outputs": [],
"source": [
"# use proscrustes:\n",
"def procrustes(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:\n",
" # A_centered = A - A.mean(dim=0, keepdim=True)\n",
" # B_centered = B - B.mean(dim=0, keepdim=True)\n",
"\n",
" #M = B_centered.T @ A_centered\n",
" M = B.T @ A\n",
" # find optimal rotation with svd\n",
" U, _, Vt = torch.linalg.svd(M)\n",
"\n",
" # get rotation matrix that aligns B to A\n",
" R = U @ Vt\n",
"\n",
" check_orthogonal(R)\n",
" \n",
" return B @ R # return rotated tensor\n",
"\n",
"def get_rotated_matrix(A, B, n = 1000):\n",
" # use only the first n tokens for rotation:\n",
" # return procrustes(A[:n], B[:n])\n",
" return procrustes(A, B)\n",
" \n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "ff93495e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ModelA mean norms: 1.3624546527862549\n",
"ModelB mean norms: 11.50130844116211\n",
"0.1184608394563315\n",
"new_embedding mean norms: 11.50130844116211\n"
]
}
],
"source": [
"emb1 = modelA.get_input_embeddings().weight\n",
"emb2 = modelB.get_input_embeddings().weight\n",
"\n",
"# emb1_R = get_rotated_matrix(emb2, emb1)\n",
"\n",
"print(\"ModelA mean norms:\", torch.norm(emb1, dim=1).mean().item())\n",
"print(\"ModelB mean norms:\", torch.norm(emb2, dim=1).mean().item())\n",
"# print(\"Rotated modelB mean norms:\", torch.norm(emb1_R, dim=1).mean().item())\n",
"\n",
"scaling_factor = torch.norm(emb1, dim=1).mean().item() / torch.norm(emb2, dim=1).mean().item()\n",
"\n",
"print(scaling_factor)\n",
"\n",
"# new_embedding = torch.nn.Embedding.from_pretrained(emb2_R*scaling_factor)\n",
"new_embedding = torch.nn.Embedding.from_pretrained(emb1/scaling_factor)\n",
"\n",
"\n",
"print(\"new_embedding mean norms:\", torch.norm(new_embedding.weight, dim=1).mean().item())\n",
"\n",
"modelA.set_input_embeddings(new_embedding)\n",
"modelA.lm_head.weight = new_embedding.weight\n"
]
},
{
"cell_type": "code",
"execution_count": 107,
"id": "9b671b41",
"metadata": {},
"outputs": [],
"source": [
"modelA.transformer.wpe.weight = modelB.transformer.wpe.weight"
]
},
{
"cell_type": "code",
"execution_count": 109,
"id": "85957357",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelA.lm_head.out_features == tokenizerA.vocab_size"
]
},
{
"cell_type": "markdown",
"id": "f6b39638",
"metadata": {},
"source": [
"Text:"
]
},
{
"cell_type": "markdown",
"id": "fbfa8d62",
"metadata": {},
"source": [
"With it:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "998a0ed6",
"metadata": {},
"outputs": [],
"source": [
"# modelA.lm_head.weight = modelA.get_input_embeddings().weight # should change nothing: they are the same object.\n"
]
},
{
"cell_type": "markdown",
"id": "aa8b7ca4",
"metadata": {},
"source": [
"Text:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d8d9d612",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Device set to use cpu\n",
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'generated_text': 'Hello, how are you?\\n\\nYou are not a new.\\n\\nYou are a new.\\n\\n\\nYou are not a new.\\n\\n\\nYou are not a new.\\n\\n\\na new.\\n\\na new.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na.\\n\\na\\n\\na.\\n\\na\\n\\n.\\na\\n\\na\\n\\na\\n\\n.\\na\\n\\na\\n\\n.\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n.\\n\\na\\n\\n.\\n\\na\\n\\n.\\n\\n'}]\n"
]
}
],
"source": [
"# use model\n",
"pipe = pipeline(\"text-generation\", model=modelA, tokenizer=tokenizerB)\n",
"print(pipe(\"Hello, how are you?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc72ea8a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7673a5e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 26,
"id": "79616f5c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelA.lm_head.weight.data_ptr() == modelA.get_input_embeddings().weight.data_ptr()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7fc76499",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"modelB.lm_head.weight.data_ptr() == modelB.get_input_embeddings().weight.data_ptr()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7d51d201",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 1212, 318, 257, 1332, 290, 1312, 4240, 1521, 262, 11241,\n",
" 11341, 389, 262, 976])\n"
]
}
],
"source": [
"tok = tokenizerA(\"This is a test and i wonder why the tokenizers are the same\", return_tensors = \"pt\")\n",
"print(tok.input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2e76534a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 1212, 318, 257, 1332, 290, 1312, 4240, 1521, 262, 11241,\n",
" 11341, 389, 262, 976])\n"
]
}
],
"source": [
"tok = tokenizerB(\"This is a test and i wonder why the tokenizers are the same\", return_tensors = \"pt\")\n",
"print(tok.input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a44c465a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "381c712f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "153995fe",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}