Go to file
2025-06-13 11:15:18 +02:00
.gitignore restructure notebook and add autoarima + prophet 2025-06-12 16:16:26 +02:00
price_actual_over_time.png restructure notebook and add autoarima + prophet 2025-06-12 16:16:26 +02:00
pyproject.toml restructure notebook and add autoarima + prophet 2025-06-12 16:16:26 +02:00
README.md restructure notebook and add autoarima + prophet 2025-06-12 16:16:26 +02:00
ShapTime.py first commit 2025-06-11 13:26:49 +02:00
tsforecast.ipynb minor change in comments notebook 2025-06-13 11:15:18 +02:00
uv.lock restructure notebook and add autoarima + prophet 2025-06-12 16:16:26 +02:00

Time series forecasting energy prices

tsf

With features representing energy generation of various sources (oil/biomass/hydro)

Setup

Prerequisites:

  • Have a working version of pip preferably in Python 3.12

Steps

  1. Install uv
pip install uv
  1. Create & activate virtual environment
uv venv .venv
# on Windows
.\.venv\Scripts\activate
# on Linux:
source .venv/bin/activate
  1. Install the dependencies
uv pip install .

Get hackin'

Look in tsforecast.ipynb

  • Play around with some of the techniques
    • Seasonal decompose
    • SARIMA
    • XGBoost
    • LSTM
  • Try to beat my MAE on test set of ~0.30 (I used LSTM)